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Abstract

Two new sets of scoring matrices are introduced:H2 for the protein sequence comparison andT2 for the protein
sequence–structure correlation. Each element ofH2 or T2 measures the frequency with which a pair of amino acid types
in one protein, k-residues apart in the sequence, is aligned with another pair of residues, of given amino acid types~for
H2! or in given structural states~for T2!, in other structurally homologous proteins. There are four types, corresponding
to thek-values of 1 to 4, for bothH2 andT2. These matrices were set up using a large number of structurally homologous
protein pairs, with little sequence homology between the pair, that were recently generated using the structure com-
parison program SHEBA.

The two scoring matrices were incorporated into the main body of the sequence alignment program SSEARCH in the
FASTA package and tested in a fold recognition setting in which a set of 107 test sequences were aligned to each of a
panel of 3,539 domains that represent all known protein structures. Six procedures were tested; the straight Smith-
Waterman~SW! and FASTA procedures, which used the Blosum62 single residue type substitution matrix; BLAST and
PSI-BLAST procedures, which also used the Blosum62 matrix; PASH, which used Blosum62 andH2 matrices; and
PASSC, which used Blosum62,H2, andT2 matrices. All procedures gave similar results when the probe and target
sequences had greater than 30% sequence identity. However, when the sequence identity was below 30%, a similar
structure could be found for more sequences using PASSC than using any other procedure. PASH and PSI-BLAST gave
the next best results.
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Protein sequences are usually aligned using a scoring scheme that
measures the frequency of substitution of single amino acid resi-
dues~Dayhoff et al., 1978; Gonnet et al., 1992; Henikoff & Heni-
koff, 1992; Jones et al., 1992; Overington et al., 1992!. Here, we
examine the effect of using the frequency of substitution of pairs
of residues at a time that are up to four residues apart in sequence.
The motivation for this exploration arises from the fact that, in
common structural motifs such as helices and beta strands, close
side-chain contacts are made between residues that are two, three,
or four residues apart.

The idea of using pairs of residues from each protein compared
is not new. Nakayama et al.~1988! and van Heel~1991! used
compositions of neighboring amino acid pairs to compare database
protein sequences. A large number of studies have been made on
correlated mutations in which a pair of residues are mutated si-
multaneously~Göbel et al., 1994; Neher, 1994; Shindyalov et al.,
1994; Taylor & Hatrick, 1994; Chelvanayagam et al., 1997; Olmea

& Valencia, 1997!. These latter studies are mainly concerned with
residue pairs that are in contact in three-dimensional~3D! struc-
ture, but not necessarily close in sequence. In contrast, we will be
interested in this paper in using pairs of residues that are close
together in sequence so that their substitution frequencies may be
used in conventional dynamic programming algorithms like those
for single residues. Gonnet et al.~1994! considered a score matrix
for substituting a consecutive pair of residues at a time. They
reported some interesting properties of the resulting 4003 400
matrix, but did not consider it to be useful in sequence compari-
sons because the database available at the time was too small to
adequately fill the large matrix. However, they expressed the hope
that, as the size of the database expands, matrices of this type could
be used with amino acid pairs that are 1, 2, 3, or 4 residues apart
in the sequence. We report here the results of using just this kind
of matrices, although somewhat differently normalized.

To make the pair-by-pair comparisons, we prepared a set of four
4003 400 ~symmetric! matrices,H2

k, wherek was the sequence
separation between a pair of residues and ranged from 1 to 4. Each
element of these matrices represents the frequency with which a
pair of residue types in one protein, separated in the sequence by
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k residues, is replaced by another pair of residue types at the
corresponding position in other structurally homologous proteins
in a database. The database used was a set of over 10,000 struc-
turally aligned pairs of protein domains prepared recently by using
a new protein structure alignment program SHEBA~Jung & Lee,
2000!.

Another set of four matrices,T2
k, were generated from the same

database. These are similar to theH2
k matrices, except that each

element represents the frequency with which a pair of residue
types in one protein is aligned to a residue pair in another protein
that has certain defined structural features. The structural feature
of a residue was described by means of a structural profile~Eisen-
berg et al., 1997! that includes the secondary structural type and
the polarity of the structural environment of the residue. We used
16 structural classes so that these matrices were 4003 256 in
dimension.

These matrices were tested in a fold recognition setting~Fischer
et al., 1996; Miller et al., 1996; Di Francesco et al., 1997; Flockner
et al., 1997; Karplus et al., 1997; Levitt, 1997; Marchler-Bauer &
Bryant, 1997; Marchler-Bauer et al., 1997; Rice et al., 1997; Jones,
1999!, in which 107 protein sequences~probe sequences! selected
from the SCOP database~Murzin et al., 1995! were aligned to a
large panel of proteins of known structure. The structure panel
used contained 3,539 domains that represent all structures in the
Protein Data Bank~PDB! database. It included structures that are
similar as well as unrelated to the probe protein structures, with
both high and virtually no sequence homologies. The tests were
carried out using two computer programs, PASH~pair-to-pair align-
ment of sequence homology! and PASSC~pair-to-pair alignment
of sequence–structure correlation!. These are FASTA programs
~Pearson & Lipman, 1988; Pearson, 1998! with a modification in
the SSEARCH part of the program that runs the Smith–Waterman
algorithm~Smith & Waterman, 1981!. The modification was made
only to make the dynamic programming algorithm to use pairs of
residues rather than single residues. PASH uses both the single
residue substitution Blosum62~Henikoff & Henikoff, 1992! and
H2

k matrices. PASSC uses theT2
k matrices in addition to the two

sets of matrices used in PASH. A number of authors recently used
a combination both the sequence homology and the structural pro-
file information in fold recognition problems~Rice & Eisenberg,
1997; Jaroszewski et al., 1998; Russell et al., 1998!. We find that
PASH and PASSC perform similarly to FASTA when the probe
and target sequences have more than 30% identity, but that they
find significantly more sequences with identities below 30% that
are structurally homologous.

Results

Characteristics of the score matrices H2
k

TheH2
k matrix elements are labeled by a quartet of residue types,

RRkR9R9k, whereRandRk are the residue types of a pair of residues
that arek-positions apart in the sequence of one protein andR9 and
R9k are the residue types of the matching residues in another protein
that is aligned to the first. The matrix elements were evaluated by
counting the frequency with which each quartet of residue types
occurs in an aligned protein pair~APP! database. A matched pair
of residue pairsRRk:R9R9k contributes to both theRRkR9R9k and the
R9R9kRRk elements ofH2

k. This makes the matrices symmetric,
which means that there are only 80,200 unique elements in each
matrix.

The APP database was prepared from the structural alignments
of all known protein domain representatives~see Materials and
methods! using the structure alignment program SHEBA~Jung &
Lee, 2000!. The total number of aligned quartets in the database
was 892,724 so that the average number of observations per quar-
tet was 11. However, a large number of quartets were not ob-
served. The number of matrix elements with low counts are given
in Table 1 fork 5 1. The data for otherk values are nearly the
same. A similar data from Gonnet et al.~1994! are given for
reference. The database of Gonnet et al. is nearly twice as large
~1,743,134 aligned quartets! as our APP database. In addition,
because of the way we recognize structurally homologous protein
pairs~see Materials and methods!, over 85% of the protein pairs in
our APP database~9,306 out of 10,712! occur in duplicates~A to
B and B to A!. Duplicated pairs tend to be more structurally similar
than those that occur only once. For the purpose of comparison
with the matrix of Gonnet et al., two counts in our matrix elements
are approximately equivalent to one count in those of Gonnet et al.

Table 1 shows that the Gonnet database produces more matrix
elements with no observation and less number of elements with
high counts, both in absolute counts and in percentages, than the
APP database. This is probably because the aligned proteins in the
Gonnet database are made of highly homologous proteins culled
from a sequence database, whereas those in the APP database
consist of structurally similar, but not necessarily sequentially ho-
mologous, proteins. That the latter database consists of less ho-
mologous proteins is also evident from the increased number of
mutations observed among the aligned residue quartets~Table 2!.

To see if the quartet frequencies carry more information than is
available in single pair frequencies alone, theRAq0p ratios were
computed, whereRAq0p5 Pq~RRk:R9R9k!0@Pp~R:R9! p Pp~Rk:R9k!#.
The superscriptA here is to distinguish this ratio from the “ran-
dom” ratio, which will be described shortly.Pq and Pp are the
probabilities of finding an aligned quartet or pair types, respec-
tively, in the database. These were computed as the observed num-
ber of the quartet or pair types divided by the total number of
aligned quartets, which was equal to the total number of aligned
pairs ~see Materials and methods!. If aligned pairs,R:R9, occur
independent of each other, i.e., neighboring aligned pairs are un-
correlated, thenRAq0p will be equal to 1. Figure 1 shows the actual
distributions of theRAq0p values for differentk values. The con-
siderable spread of the distributions indicates that the quartet fre-
quencies indeed carry information that is not present in the single
pair frequencies alone.

The frequencies of the aligned quartets were compared to “ran-
dom” quartet frequencies. These latter frequencies were obtained
by ignoring the structural alignment and counting all conceivable,
rather than only the aligned, matches ofRRk type in one protein
andR9R9k type in the other in each aligned pair of proteins in the
APP database~see Materials and methods!. The frequencies of
“random” single pairs were also counted in the similar manner and,
from these,RRq0p values were calculated for the “random” align-
ments. The distributions ofRRq0p values are also shown in Fig-
ure 1. The spread observed in the distribution of “random” quartets
must result from the high correlation that exists between residue
types of sequence neighbors~van Heel, 1991!. Some of the spread
in the distribution of aligned quartets must be also due to this
in-sequence pair correlations. However, the larger spread in the
distribution of aligned quartets indicates that there are additional
correlations between neighboring aligned pairs, over and above
those between neighboring single residues.

Pair-to-pair amino acid substitution and profile matrices 1577



The score matrix elements were calculated as logarithms of odds
ratios,PA0PR, wherePA andPR are the probabilities of finding an
aligned and “random” residue quartet types, respectively, in the
APP database. This is in contrast to Gonnet et al.~1994!, who used
the logarithm ofRAq0p. Use of the single aligned pair frequencies
as the reference is probably good for recognition. Use of “random”
~unaligned! frequencies is probably better for accurate alignment.
The odds ratio distributions are shown in Figure 2. For allk-values,
about 68% of the matrix elements had the odds ratio below 1.0.
Since we use the Smith–Waterman algorithm for alignment, wherein
negative scores were set to zero, these elements did not participate
in the alignment process. However, more than 65% of all aligned
quartets in the database were of the type represented by one of the
remaining 32% of the matrix elements for allk-values. Matrix
elements with large number of observations, highRAq0p ratio, and
also high scores~odds ratio! are listed in Table 3. All are diagonal
elements of the matrices. Gly and, to a lesser extent, Asp and Pro
appear to be the most important residues for correct structural
alignment, since they occur most frequently in this list.

Characteristics of the score matrices T2
k

TheT2
k matrix elements are labeled by a pair of residue types and

a pair of residue environment types,RRkE9E9k, whereR andRk are

the residue types of a pair of residues that arek-positions apart in
the sequence of one protein andE9 and E9k are the residue envi-
ronment types of the matching residues in another protein that is
aligned to the first. A residue environment type is specified by two
features; the secondary structural type in which the residue is
found and the degree of exposure to the polar environment, as
measured by the fraction of the accessible surface area of the side
chain of the residue that is either exposed to the solvent or buried
by a polar atom of the protein. There are four secondary structural
types, designated ash, s, t, andc for helix, sheet, turn, and coil,
respectively. The degree of exposure to the polar environment is
also classified into four categories, designated as 0, 1, 2, and 3 for
0–25, 25–50, 50–75, and 75–100% exposure, respectively. Thus,
there are 43 4 5 16 residue environment types and the total

Table 1. Number of H2
1 matrix elements with low counts

From APP database From Gonnet et al.~1994!

Number of
observations

Number of
matrix elements %

Number of
observations

Number of
matrix elements %

0 15,811 19.7 0 36,674 45.7
1–2 13,021 16.2 1 13,588 16.9
3–4 9,687 12.1 2 6,870 8.6
5–6 7,609 9.5 3 4,110 5.1
7–8 5,716 7.1 4 2,809 3.5
9–10 4,524 5.6 5 1,932 2.4

11–12 3,617 4.5 6 1,506 1.9
13–14 2,981 3.7 7 1,104 1.4
15–16 2,445 3.0 8 925 1.2
17–18 2,042 2.5 9 792 1.0
19–20 1,642 2.0 10 686 0.9
.20 11,105 13.8 .10 9,204 11.5

Table 2. Mutation ratesa

APP Gonnet et al.

None 48,426 1,071,219
One 256,974 506,251
Two 587,324 165,664

Total 892,724 1,743,134

aNumber of quartetsRRk:R9R9k for which both aligned pairs are the same
~none:R 5 R9 andRk 5 R9k!, only one is preserved~one: eitherR 5 R9 or
Rk 5 R9k!, or both pairs are different~two: RÞ R9 andRk Þ R9k!. The second
column is for our APP database; the third column is from Gonnet et al.
~1994!.

Fig. 1. Number ofH2
k matrix elements as a function of the aligned~solid

line! and “random”~dotted line! quartet to single pair probability ratio,
Rq0p, each for four differentk values.
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number ofT2
k matrix elements is 203 20 3 16 3 16 5 102,400.

Each aligned quartet of residues between two proteinsA and B
contributes to two matrix elements: once to the elementR andRk

of proteinA andE andEk of proteinB and again to the elementR

andRk of proteinB andE andEk of proteinA. The average number
of observations per matrix element was 17.

The number ofT2
k matrix elements with low counts are given in

Table 4. Again, because most of the protein pairs in our APP
database occur in duplicates, we binned the frequency data in steps
of two counts. Column 6 of Table 4 shows that more than 40% of
thek5 1 matrix elements have not been observed. This percentage
is more than twice that for theH2 matrix, but similar to the 46% for
the sequence homology matrix of Gonnet et al.~Table 1!. This is
understandable since the APP database is made of structurally
aligned proteins; many residue pair types are never found aligned
to certain environmental pair types, just as many residue pair types
are never found aligned with certain other residue pair types in
sequentially homologues pairs of proteins. The number of matrix
elements with zero observation decreases ask increases, which
indicates that the correlation between residue type pair and struc-
tural feature pair decays as the sequence separation between the
pair increases.

The RRk:E9E9k quartet probabilities were again compared to the
product of theR:E9 single probabilities to see if the quartets carry
more information than contained in the single pairs. Figure 3 shows
the distribution of theRAq0p andRRq0p ratios. The large spread of
theRRq0p distributions reflects the strong in-sequence correlation
that exists between the environments~primarily the secondary struc-
ture but probably also the polarity! of neighboring residues. The
distribution becomes narrower and more centered around the unity
for largerk values, as expected since the in-sequence correlation
must decrease ask increases. TheRAq0p distribution is also broad
and clearly different from the “random” distribution. Thus, as in
the case of the sequence homology, the quartet probabilities are
different from the product of the singles and the difference is over
and above that expected from the in-sequence correlation alone.

TheT2
k matrix elements, like theH2

k matrix elements, were also
calculated as logarithms of odds ratios,PA0PR, wherePA andPR

Fig. 2. Number of H2
k matrix elements as a function of the odds ratio,

PA0PR, for four differentk values.

Table 3. H2
k matrix elements with odds ratio.20, probability

ratio .2, and fR . average frequency (2,230)

RRk:R9R9k
a kb Oratioc Pratiod f A e

f R f

DG:DG 2 49.1 2.9 878 3,579
GP:GP 2 48.0 2.8 736 3,072
SP:SP 3 31.5 4.6 443 2,815
GD:GD 1 31.3 2.9 890 5,688
FG:FG 3 28.5 2.0 350 2,461
PV:PV 2 27.6 2.7 432 3,130
GG:GG 2 27.4 2.1 1,470 10,737
DS:DS 1 27.3 4.9 547 4,008
LP:LP 1 26.7 2.5 510 3,827
GG:GG 3 26.6 2.1 1,442 10,844
SG:SG 2 23.2 3.1 779 6,722
DT:DT 3 21.5 2.8 303 2,825
DT:DT 1 20.4 2.8 298 2,922
DI:DI 1 20.0 2.6 312 3,124

aRRk:R9R9k, residue types of the four residues of a matrix element. The
residue types are given in one-letter codes.

bk, residue separation.
cOratio, odds ratio5 Pij

A0Pij
R whereA 5 aligned,R5 random, andPij 5

P~RRk:R9R9k!.
dPratio, probability ratio5 Pij

A0~Pi
A p Pj

A!, whereA 5 aligned,Pi 5
P~R:R9!, andPj 5 P~Rk:R9k!.

ef A, frequency observed in the aligned list. The average frequency over
all types is 11.

ff R, frequency observed in the “random” list. The average frequency
over all types is 2,230.

Fig. 3. Number ofT2
k matrix elements as a function of the aligned~solid

line! and “random”~dotted line! quartet to single pair probability ratio,
Rq0p, each for four differentk values.
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are the probabilities of finding an aligned and “random” pair of
pairs,RRkE9E9k, respectively, in the APP database. Matrix elements
with large number of observations, highRAq0p ratio, and also high
scores~odds ratio! are listed in Table 5. Buried or partially buried
Cys residue type appears most frequently in this list.

Entropy of the score matrices

Given a score matrix, the average score per alignmentSis given by
(Pij

Asij , where Pij
A is the probability of an alignment,sij is an

element of the score matrix, and the summation is over all the
matrix elements. When the score matrix is defined as base 2 log-
arithm of the odds ratio,S is also the relative information theoret-
ical entropy of the target alignment in bit units~Altschul, 1991;
Karlin & Altschul, 1991!. The entropy values for theH2

k andT2
k

matrices are 0.70 and 0.50, respectively, for allk values. The value
for theH2

k matrices is similar to those of PAM160~Dayhoff et al.,
1978; Altschul, 1991! and Blosum62~Henikoff & Henikoff, 1992,
1993! matrices. The fact thatS is less for theT2

k than for theH2
k

matrices indicates that sequence–environment correlation is less
than sequence–sequence correlation even for the structurally aligned
APP database. The entropy values for theH1 andT1 matrices were
also calculated whereH1 andT1 matrices are the single residue pair
and single residue–environment pair alignment score matrices, re-
spectively, calculated using the same APP database. They are 0.25
and 0.15, respectively. The entropy of theH1 matrix is comparable
to that of the PAM310 matrix and between those for the Blosum35
and Blosum40 matrices. The low value again indicates that protein
pairs in our APP database are not highly sequentially homologous.
The fact that the entropies for theH2

k andT2
k matrices are signif-

icantly higher than thoseH1 and T1 states that there is a large
increase in information content when pairs of pairs are used com-
pared to the single pairs.

Number of correct hits and false positives

Figure 4 shows the z-scores obtained when each of the 107 probe
sequences was aligned to every protein in the 3,539-protein do-
main database using the PASSC procedure. The z-scores are those
used by the FASTA program and correspond to the ordinary z-score
times 10 plus 50. The maximum z-score was 2,691 for the 1gfn–
2omf pair, which had 100% sequence identity. The minimum was
20 for the 1pdo–1ksiA0 pair, which were not structurally related
and had 0% sequence identity after the alignment. The figure shows
only those with z-scores between 50 and 300. As can be seen from
the plot, the z-score distributions do not show significant depen-
dence on the size of the probe. This was achieved because the

Table 4. Number of T2
k matrix elements with low counts

Number of matrix elements %
Number of
observations k 5 1 k 5 2 k 5 3 k 5 4 k 5 1 k 5 2 k 5 3 k 5 4

0 42,601 35,138 31,227 29,562 41.6 34.3 30.5 28.9
1–2 13,594 13,962 14,032 13,764 13.3 13.6 13.7 13.4
3–4 7,706 8,516 8,855 9,018 7.5 8.3 8.6 8.8
5–6 5,148 5,882 6,187 6,440 5.0 5.7 6.0 6.3
7–8 3,743 4,369 4,761 4,889 3.7 4.3 4.6 4.8
9–10 2,862 3,440 3,767 3,857 2.8 3.4 3.7 3.8

11–12 2,291 2,838 3,089 3,325 2.2 2.8 3.0 3.2
13–14 1,983 2,381 2,582 2,699 1.9 2.3 2.5 2.6
15–16 1,634 2,037 2,193 2,292 1.6 2.0 2.1 2.2
17–18 1,420 1,772 1,989 2,045 1.4 1.7 1.9 2.0
19–20 1,240 1,503 1,709 1,825 1.2 1.5 1.7 1.8
.20 18,178 20,562 22,009 22,684 17.8 20.1 21.5 22.2

Table 5. T2
k matrix elements with odds ratio.15, probability

ratio .2, and fR . average frequency (3,493)

RRk:E9E9k
a kb Oratioc Pratiod f A e

f R f

AC:c2h1 3 40.6 28.3 723 3,567
HC:h2h1 1 32.7 98.0 846 5,187
AH:c2h2 2 27.4 18.5 696 5,085
VA:s0h1 4 22.4 2.2 419 3,742
LC:s0s0 2 21.5 18.6 1032 9,623
DS:c1t2 1 21.1 30.1 657 6,237
YC:s1s0 2 20.2 20.8 756 7,507
AC:s1s0 4 19.4 8.0 371 3,839
DG:c1t1 2 17.4 26.6 310 3,562
CV:s0s0 2 17.3 14.0 802 9,296
TC:s2s0 3 16.8 9.4 522 6,211
GW:s2c1 1 16.0 19.9 333 4,167
CD:c1c1 3 15.9 30.6 526 6,636
VW:s1c1 3 15.8 6.9 329 4,166
WG:s1t3 4 15.6 5.8 400 5,148

aRRk:E9E9k, two residue types~RRk! in one protein and a pair of envi-
ronment types~E9E9k! in the other, matched protein. The residue types are
given in one-letter amino acid codes. The environmentE is defined by a
combination of a secondary structural type and the degree of exposure to
solvent and other polar environment. For secondary structural elements:h,
helix; s, b-sheet;t, turn; c, coil. For the degree of exposure to a polar
environment: 0, 0–25% exposure; 1, 25–50%; 2, 50–75%; 3, 75–100%.

bk, residue separation.
cOratio, odds ratio5 Pij

A0Pij
R whereA 5 aligned,R5 random, andPij 5

P~RRk:E9E9k!.
dPratio, probability ratio5 Pij

A0~Pi
A p Pj

A!, whereA 5 aligned,Pi 5
P~R:E9!, andPj 5 P~Rk:E9k!.

ef A, frequency observed in the aligned list. The average frequency over
all types is 17.

f f R, frequency observed in the “random” list. The average frequency
over all types is 3,439.
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z-scores were computed using a facility in FASTA that corrects for
the size of the proteins~Pearson, 1998! and by the judicious choice
of the weights in Equation 3 in Materials and methods. A similar
lack of dependence on the size of the probe sequence was seen
when the probes were aligned using the unmodified FASTA, Smith–
Waterman~SW!, or the PASH procedures. It is also clear from the
figure that the pairs with high z-scores are structurally homologous
and that structurally nonhomologous pairs begin to appear as the
z-score is lowered.

To see how the structurally homologous and nonhomologous
pairs ranked in terms of the z-scores, the 107p 3,539 aligned
protein pairs were sorted in descending order of their z-scores. The
cumulative number of structurally homologous pairs, with less
than 30% sequence identity between the pair, were counted and
plotted as a function of the rank in the sorted list. The results are
shown in Figure 5 for the four different alignment procedures. The
figure shows that, in terms of the number of structurally homolo-
gous protein pairs that occur among the top-scoring protein pairs
of low sequence homology, PASH is indeed clearly better than
either FASTA or SW and that PASSC makes a further improve-
ment over PASH.

Another way to measure the performance of the different align-
ment procedures is to count the structurally homologous~correct
hits! as well as the nonhomologous~false positives! pairs that have
z-scores above a cutoff value. Obviously, if the z-cutoff value is set
high, there will be no false positives, but the number of correct hits
will be small. Lowering the z-cutoff value increases the number of
correct hits but the number of false positives also increases. We
chose the z-cutoff value as the lowest z-score that still maintains
the number of false positives to less than 2% of the total number
of pairs above the cutoff value. The numbers of correct hits and

false positives with this choice of z-cutoff are given in Table 6.
Since pairs with high sequence homology tend to have high z-scores
regardless of the alignment procedure used, we counted the num-
ber of correct hits separately for those with less or higher than 30%
sequence identity. There were 99 pairs with 100% sequence iden-
tity; these were not counted. Column 3 shows that all alignment
procedures find essentially the same number of correct hits when
the sequence identity is higher than 30%. The number of correct
hits with less than 30% sequence identity is also the same between
the FASTA and SW procedures~Column 4!, but it increases by
50% when the PASH procedure is used and more than doubles
when the PASSC procedure is used.

The total number of structurally homologous pairs with less than
30% sequence homology is 3,339. Thus, the actual number of
correct hits obtained using any procedure is only a small fraction
of the possible total, indicating that a large number of structurally
homologous pairs with low sequence homology have z-scores be-
low the cutoff value for all procedures. It can also be noted that,
even among those with greater than 30% sequence identity, the
number of correct hits is less than the possible total. The eight pairs
with better than 30% identity, but which did not register as the
correct hits by PASSC alignment, were examined. It was found
that the alignments were essentially the same as the SHEBA align-
ments for all eight cases. However, for seven of the eight cases, the
target domain was one-third to one-fourth the size of the probe.
Thus, even though each of these domains was a true structural

Fig. 4. Z-cores for the 107 probe sequences when each were optimally
aligned to all of the 3,539 proteins in the domain database using the PASSC
procedure. The z-scores plotted are those used in FASTA, which corre-
spond to the true z-score times 10 plus 50. Z-scores below 50 or above 300
are not shown. Open and closed circles are for the structurally homologous
and nonhomologous pairs, respectively, according to the structure–structure
alignment by SHEBA. The horizontal dotted line indicates the z-score
cutoff value used in Table 6.

Fig. 5. Cumulative number of structurally homologous pairs as a function
of the rank in the list of all pairs sorted in descending order of the z-score.
The protein pairs and their z-scores are for the alignments of 107 probe
sequences to the 3,539 domains using the FASTA, SW, PASH, and PASSC
procedures as indicated, except that the pairs that have more than 30%
sequence identity after structural alignment by SHEBA were omitted. The
Figure shows only the 400 highest scoring pairs. If all structurally homol-
ogous pairs had z-scores higher than any structurally nonhomologous pair,
the diagonal line is expected, since the total number of structurally homol-
ogous pairs is much more than 400~see Table 6!. The deviation of each
curve from the diagonal gives the cumulative number of structurally non-
homologous pairs.
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homologue of a part of the probe structure, the part was too small
to score high by the FASTA criteria, which obtains scores for the
global alignment. The eighth protein pair was 1bdo–1fyc, which
had 33% sequence identity between them and a z-score of 121.
There were three other domains that had higher z-scores, all of
which were correct hits for this probe. The z-score cutoff value
used was obviously too high for this probe.

Alignment shifts compared to the structure–structure
alignment

The sequence–sequence and sequence–structure alignments ob-
tained here can be compared to the structure–structure alignment
by SHEBA using the average alignment shift,Dr. This latter quan-
tity is defined asDr 5 ( Drii 90N, wherei and i9 are two residues,
one from the probe and the other from the target sequences, which
are aligned in the structural alignment by SHEBA,Drii 9 is the
number of residues and gaps that separate these residues in the
alignment by one of the procedures described here,N is the total
number of aligned residues in the SHEBA alignment, and the
summation is over allN aligned residue pairs. The distribution of
Dr values for alignments with less than 30% sequence identity is
given for each of the three different alignment procedures in Table 7.
In most cases, the alignments obtained by these procedures are
essentially the same as those obtained by structural alignments, but
there are also some correct hits that nonetheless have very different
alignment from what SHEBA obtains. The three cases with the
largest alignment shifts after PASSC alignment were examined in
detail. In the case of the bacterial luciferase~1lucA–1xkjB1! and

carboxypeptidase–lactamase~3pte–1blsA1! pairs, SHEBA align-
ments include large gaps, of 173 and 98 residues long, respec-
tively. The PASSC procedure, being a variant of the FASTA program,
uses extension gap penalty and does not allow such a large gap.
Instead, it aligned the last half of the domain structure to the
structurally nonhomologous middle part of the probe sequence.
The average alignment shifts produced were 101 and 58, respec-
tively. The other pair was the membrane protein porins~2omf–
1prn!, which have a barrel structure made of 16b-strands. In the
alignment obtained by PASSC, the barrels were rotated by two
strands relative to each other when compared to the SHEBA align-
ment, causing an average alignment shift of 59. The percent se-
quence identity increased from 12 to 26% after this rotation.

Fold recognition in different ranges of sequence homology

Not surprisingly, many correct hits were found for some probe
sequences while no hit was found for some others. Since one
correct hit is sufficient to identify the fold of a given probe se-
quence, the number of different probe sequences represented in the
list of correctly hit probe-target pairs is of interest. Figure 6 shows
the number of probe sequences with at least one correct hit in
different ranges of percent sequence identities. It also shows the
maximum possible number in each sequence range, which is the
total number of probe sequences with a structural homologue in
the indicated sequence identity ranges regardless of the z-score.

There were 83 probe sequences that had a correct hit with 100%
sequence identity. Excluding these self-matches, the number of
probe sequences with at least one correct hit is small when the
sequence identity is greater than 30% because the domain database
is such that no two domains have sequence identity greater than
50% ~Jung & Lee, 2000!. In these high sequence identity ranges,
all alignment procedures find essentially the same maximum pos-
sible number of probes. The number is also small when the se-
quence identity is below 10%, despite the fact that most probe
sequences have at least one structural homologue in these ranges.
This indicates the limited power of the procedures used in this
study for identifying structural homologues with little sequence
homology. In the middle range of sequence identities, the number
of probe sequences with at least one correct hit is clearly larger
when PASH or PASSC is used than when FASTA or SW is used.
For example, for the 20–25% sequence identity range, both FASTA

Table 6. Results after threading 107 chains through the 3,539 domainsa

Number of correct hits Number of probes with at least one correct hit

z-cutoff %idc ^ 30 %idc , 30 Nf
b %idc ^ 30 %idc , 30

FASTA 128.0 115 84 2 44 46
SW 132.6 115 84 2 44 45
PASH 125.5 116 125 1 44 55
PASSC 125.7 114 183 5 43 62
SHEBA 122d 3,339d 46e 107e

aPairs with 100% identity were omitted.
bNumber of false positives.
cPercentage of identical residues among the aligned residues.
dTotal number of structurally homologous pairs in the specified sequence homology ranges.
eTotal number of probe sequences which have at least one homologous structure in the domain database in the specified sequence

homology ranges.

Table 7. Number of correct hitsa in different alignment shift
(Dr) categories

Dr % 5 5 , Dr % 10 Dr . 10

SW 64 8 12
PASH 96 16 13
PASSC 151 18 14

aOnly those with less than 30% sequence identities were counted.
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and SW find at least one correct hit for 22 probe sequences, com-
pared to 29 and 34 with PASH and PASSC, respectively. The
corresponding numbers for the 15–20% range are 5, 5, 13, and 18
for FASTA, SW, PASH, and PASSC, respectively. Similar data, but
using only two sequence identity classes, those with higher or
lower than 30% sequence identities, are also given in the last two
columns of Table 6.

To see if the improvement is due to the use of the structurally
aligned protein database or to the use of the pair-by-pair compar-
ison matrices, we also ran the FASTA program using theH1 matrix
derived from APP. The result~dotted line in Fig. 6! is very similar
to that using the Blosum62 matrix, although there is a hint of a
better result at lower homology ranges. It appears, therefore, that
the main reason for the improvement is the use of the pair-by-pair
score matrices.

We also compared the PASH and PASSC procedures to the
BLAST ~Altschul et al., 1990! and PSI-BLAST~Altschul et al.,
1997! procedures, although this comparison is not a direct test of
the new score matrices since these latter procedures use a different
algorithm for searching for similar sequences. As can be seen in
the inset in Figure 6, PASH and PSI-BLAST perform similarly for
this set of test sequences while PASSC performs noticeably better.

The recognition rates among different classes of proteins are
listed in Table 8. Surprisingly, the recognition rate was the poorest
for thea-class proteins, and best for theb- and “other” classes, for
all alignment procedures. The structures of thea-class probe se-

Fig. 6. Number of probe sequences that have at least one correct hit in different 5% ranges of percent sequence identity between the
probe and the correct hit target sequences. The alignment procedures used are FASTA~cross!, SW ~triangle!, FASTA usingH1 matrix
~dotted line!, PASH~open circle!, PASSC~solid circle!, BLAST ~open square!, and PSI-BLAST~solid square!. The curves for FASTA
and SW are nearly identical at all sequence identity ranges. The curve with open diamonds indicates the number of probe sequences
that have at least one structurally homologous pair in the indicated sequence homology ranges, regardless of whether the z-score is
above or below the cutoff value. All curves superimpose exactly when the sequence identity is more than 50%.

Table 8. Recognition rate for each class

Correct hitsb ~%!

Classa Total FASTA SW PASH PASSC

a class 21 7 7 8 9
b class 25 12 12 15 17
a0b class 29 14 14 16 17
a1b class 28 11 10 12 15
Others 4 2 2 4 4

All 107 46 45 55 62

aSCOP secondary structure classification~Murzin et al., 1995!.
bTotal number of probe sequences in each protein secondary structural

class with at least one correct hit with less than 30% sequence identity.
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quences for which PASSC found at least one correct hit are shown
in Figure 7A and those for which no correct hit was found in
Figure 7B. It is apparent that 10 of the 12 probe chains with no
correct hit have an up-and-down helical bundle structure. It was
found that the probe sequences of this type of structure shared little
sequence homology with the domains that were found to be struc-
turally homologous by structure–structure alignment using SHEBA
~data not shown!. The 1lpe–1cgo2 pair given in Table 9 is an
example.

Table 9 shows the sequence identity and theH1b ~Blosum62!, H2

andT2 terms that were used in the alignment score calculation for
some sample probe-target protein pairs after they are aligned struc-
turally by SHEBA. Two examples were drawn from each second-
ary structural class, a correct hit and another that did not register
a z-score above the z-cutoff value. It can be seen that the pairs with

low z-scores have generally low sequence identity between them
and have negativeH1b andH2 scores, in contrast to those that have
a sufficiently high z-score to be recognized as a correct hit pair.

Discussion

There are many reasons why one performs a protein sequence
alignment, but one main purpose is to identify proteins that have a
similar structure to that of a given sequence. Testing a new se-
quence alignment procedure for this purpose is a complicated pro-
cess because simply increasing the number of sequences that score
significantly higher than a random match, as is usually done, is not
sufficient. It must be shown in addition that the newly found se-
quences have a similar structure to that of the given sequence
~Brenner et al., 1998! that involves comparing two structures that

Fig. 7. MOLSCRIPT~Kraulis, 1991! drawings of the structures of thea-class probe sequences with at least~A! one or~B! no correct
hit with less than 30% sequence identity.
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can be only partially or remotely similar. We used the structure–
structure comparison program SHEBA for this purpose and used
the more or less arbitrary criterion that the number of structurally
matched residues be greater than 60% of the number of residues in
the smaller protein. Obviously, one can use a different set of cri-
teria with equal justification, which can substantially change the
number of identified sequences. But, it seems unlikely that such a
change would materially alter the relative performance of the two
new alignment procedures reported herein with respect to the more
traditional SW or FASTA procedure. Also, the tests we devised are
just to test the new pair-by-pair matrices, rather than to assess
PASH or PASSC as new threading procedures, in which case the
absolute number of identified sequences would be an important
consideration.

The newH2
k and T2

k matrices, which involve pairs of amino
acids, are large matrices of dimensions 4003 400 and 4003 256,
respectively. Setting up these matrices requires a large database of
aligned pairs of proteins, which became available to us only after
the fast, large scale structure–structure alignments using SHEBA
~Jung & Lee, 2000!. Even with 10,712 aligned protein pairs, the
matrices are relatively sparse and contain many elements that are
zero for lack of data. Nevertheless, these matrices contain more
information than the single pair comparison matrices. This can be
seen from the fact that the distribution of pair–pair probabilities is
clearly different from that of the product of single-pair probabili-
ties and from the fact that the entropies for theH2

k andT2
k matrices

are much larger than those for theH1 andT1 matrices.
A problem in using these matrices is that the dynamic program-

ming algorithm is no longer rigorous in finding the best alignment
when pairs of residues are involved. We used a simple algorithm
that will find the optimal alignment when there is no gap~see
Materials and methods!, but it will not necessarily find the best
alignment when gaps are introduced. The algorithm must have
worked reasonably well since the results reported in Figures 5 and
6 and in Table 6 clearly show that the procedure, along with the

new matrices, does improve the ability of a sequence alignment
program to recognize structurally homologous proteins. It is not
clear whether a rigorous algorithm can be found. The present,
simple algorithm will work better in a nongapped procedure such
as BLAST than in FASTA. BLAST is probably the procedure of
choice for another reason as well~see below!.

The fold recognition ability varies according to the sequence
homology. As can be seen from Figure 6 and Table 6, FASTA finds
nearly all structurally homologous proteins when the sequence
identity is better than 30%. Therefore, no improvement is made
with the new procedures in this sequence homology range. How-
ever, all procedures failed to recognize some proteins with partial
structural homology in this high sequence homology range. Ex-
amination of the nature of the failures indicates~see Results! that
use of a local alignment procedure such as BLAST~Altschul et al.,
1990, 1997!, as opposed to a global alignment, would have im-
proved the ability to find these proteins. Improvement is also not
detectable when there is less than 10% sequence identity. Some of
the reasons for this lack of success at low sequence homology
range have been explored. At least in the case of thea-helical
proteins, we found that most of the failed cases involve simple
up-and-down helix bundle architecture~Fig. 7B!. The structural
homologies in these cases appear accidental or to have arisen by
convergent evolution, since sequence homology is low and theH1b

andH2 scores are actually negative~Table 9!. The CASP2~Marchler-
Bauer et al., 1997! and CASP3~Koehl & Levitt, 1999! blind
protein structure prediction experiments showed that some se-
quences are easier to predict than others by various fold recogni-
tion procedures and that the “difficult” cases are usually those that
have low or no sequence homology. It is not surprising that PASSC,
being a blend of the sequence–sequence alignment program PASH
and the “profile” method of fold recognition~Bowie et al., 1991!,
also finds it difficult to find structurally homologous proteins at the
very low sequence homology ranges.

On the other hand, there is a clear improvement in the “twilight
zone” of 10–30% sequence identities. There can be two reasons for
this improvement. One is that our APP database consists of protein
pairs that are structurally aligned but not too highly sequentially
homologous. The high mutation rate observed among the aligned
protein pairs in APP~Table 2! and the low entropy of only 0.25 for
the H1 matrix show this to be the case. Henikoff and Henikoff
~1993! pointed out some time ago that matrices derived from struc-
turally aligned database tend to perform better than those derived
from sequentially aligned database. However, the fact that FASTA
does not perform any better using theH1 matrix than when the
Blosum62 matrix is used indicates that this is not likely to be the
major reason. The other, more likely, reason is that pairs of resi-
dues contain additional information not present in single residues.

Materials and methods

Domain and aligned protein pair databases

The database used to calculate the scoring matrices consisted of
aligned pairs of protein domains of known structure. These were
obtained as follows~Jung & Lee, 2000!. There were a total of
13,983 protein chains in the March 1998 release of the PDB. These
were broken into domains using the domain parsing program, PUU
~Holm & Sander, 1994!. After eliminating theoretical models, non-
peptides, and domains with less than 40 amino acid residues, there
were 18,595 domains. The 18,595 domains were clustered into

Table 9. Components of the alignment scores for some sample
probe and target protein pairs

PDB names PASSCa Classb M c IDd H1b
e H2

e T2
e

3sdhAf–1eca U a 90 11 35 207 198
1neu–3hfmH U b 90 14 2 175 168
3chy–1ntr U a0b 66 22 50 154 80
1kuh–1hfc U a1b 83 25 75 260 97
1lpeg–1cgo2 — a 73 6 265 251 18
1who–1cid-2 — b 73 12 225 17 102
2rslA–1ah3B3 — a0b 68 18 26 54 22
1fwp–1mla-2 — a1b 87 5 250 268 19

aCheck mark shows when PASSC recognizes the target as a correct hit.
bSCOP secondary structure classification~Murzin et al., 1995!.
cNumber of structurally matched residues as a percentage of the size of

the smaller protein.
dPercent identical residues among the aligned residues after SHEBA

alignment.
eThe three score terms in Equation 3, summed over allk-values and all

aligned residue pairs, calculated after the structure-structure alignment by
SHEBA.

f This is a globin shown as the first structure in Figure 7A.
gThis protein has the up-and-down helix bundle structure shown as the

third structure in Figure 7B.
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3,539 sequentially homologous groups using a fast version of the
Needleman–Wunsch algorithm~Needleman & Wunsch, 1970! and
the Gonnet scoring matrix~Gonnet et al., 1992!. The smallest
protein was selected from each group to represent the group. This
set of 3,539 representative proteins is referred to as the domain
database.

The structure–structure comparison program SHEBA was run
between all pairs of these domains~Jung & Lee, 2000! and those
pairs that met the following criteria were selected:~1! The number
of structurally matched residues is greater than 40 in absolute
number and greater than 50% of the residues in the larger protein
of the pair;~2! Z-score is greater than 4.0. The z-score,zab, be-
tween a probe sequencea and a target sequenceb was calculated
using the number of matched residues betweena andb relative to
the average number of matched residues betweena and all other
proteins in the domain database; and~3! the number of identical
residues after the structural alignment is between 10 and 40% of
the matched residues. There were 10,712 pairs that met all of the
above criteria. Many of these are duplicates~a–b andb–a pairs!,
but some pairs with less structural homology occur only once. This
set of domain pairs is referred to as the aligned protein pair~APP!
database.

Score function

The total alignment score between a pair of proteins was calculated
as the sum of the individual contributionsaii 9 made by each pair of
aligned residues,i of one sequence andi9 of the other sequence,
minus the opening and extension gap penalties. The contribution
aii 9 was calculated as

aii ' 5 H1~Ri ; Ri ' ! ~1!

in the FASTA and Smith and Waterman~SW! alignments,

aii ' 5 H1~Ri ; Ri ' ! * 0.251 (
k51

n

H2
k~Ri2k Ri ; Ri '2k Ri ! ~2!

in the PASH procedure, and

aii ' 5 H1~Ri ; Ri ' ! * 0.201 (
k51

n

H2
k~Ri2k Ri ; Ri '2k Ri ' !

1 (
k51

n

T2
k~Ri2k Ri ;Si '2k Pi '2kSi 'Pi ' ! * 0.6 ~3!

in the PASSC procedure. In these expressions,i and i9 indicate
positions of matched residues in the two sequences andR, S,
and P, with various subscripts indicating the position of the
residue, represent the amino acid type, secondary structural type,
and polarity type of the residue, respectively. There are four
values for the secondary structural type, corresponding to helix,
sheet, turn, and coil. A secondary structural type was assigned to
each residue using the DSSP program~Kabsch & Sander, 1983!.
The polarity type refers to different ranges of polarity of the
environment of the residues. The latter is defined as the fraction
of the accessible surface area of a residue that is exposed to
solvent or buried by a polar atom~Bowie et al., 1991; Jung &
Lee, 2000!. Again, four values were used for the polarity type,
corresponding to 0–25, 25–50, 50–75, and 75–100% polarity

ranges, respectively.H1 is the single residue homology matrix.
We used the Blosum62 matrix~Henikoff & Henikoff, 1992! for
H1, since it has higher information entropy than that calculated
from the APP database. Blosum62 matrix is denoted asH1b to
distinguish it fromH1 calculated from the APP database.H2

k is
the k-type pair-to-pair sequence homology matrix, of dimension
400 3 400. T2

k is a k-type pair-to-pair sequence–structure corre-
lation matrix of dimension 4003 256. The value ofn in Equa-
tions 2 and 3 was four.

To obtain the matricesH2
k and T2

k, two k-type residue pair–
pair lists were prepared from the APP database for eachk-value.
A k-type residue pair is a pair of residues that arek-residues
apart in a sequence. One list consisted of all the aligned pairs of
k-type residue pairs~a k-type residue pair from one sequence
aligned to another pair from the second sequence! in all the
protein pairs in the database. The residues that were aligned to a
gap were not counted in calculating thek-value for this list. The
length of the list was made the same for allk-values by not
counting the quartets whose first pair falls within four residues
from the C-terminus of each protein. The second list was much
larger and consisted of a concatenation of all~np 2 4! p ~np9 2 4!
pairs of k-type residue pairs per each protein pairp 2 p9, where
np and np9 are the numbers of residues in the proteinsp and p9,
respectively. Occurrence of gaps was ignored in making this list.
These two lists are referred to as the aligned and random~k-
type! residue pair-pair lists, respectively.

The H2
k matrix was obtained by

H2
k 5 ln@PA~RRk; R'Rk

' !0PR~RRk; R'Rk
' !# , ~4!

whereinPA andPR were the normalized frequencies with which a
residue pair of the amino acid typesR andRk is found paired to
another residue pair of the amino acid typesR9 andR9k in thek-type
aligned and random residue pair–pair lists, respectively. Similarly,
the T2

k matrix was obtained by

T2
k 5 ln@PA~RRk; S'P'Sk

'Pk
' !0PR~RRk; S'P'Sk

'Pk
' !# , ~5!

whereinPA andPR were the normalized frequencies with which a
residue pair of the amino acid typesR andRk is found paired to
another residue pair which have the secondary structural typesS9
and S9k and polarity rangesP9 and P9k in the k-type aligned and
random residue pair–pair lists, respectively.

For the purpose of calculating the entropy, theH1 andT1 ma-
trices were constructed in a similar manner, but using single pair
frequencies. The total number of single pairs was made the same
as that of the quartets by not counting the pairs that are within four
residues from the C-terminus of each protein.

Alignment procedure

Default values were used for the gap penalties and the statistical pa-
rameters as given in the FASTAprogram~Pearson & Lipman, 1988;
Pearson, 1998!. The alignment routine in the FASTA package~ver-
sion 3.0t77, downloaded from the ftp site ftp:00ftp.virginia.edu0
pub0fasta! was replaced with the Smith–Waterman algorithm~Smith
& Waterman, 1981! given in the same package and then modified
to use theH2

k andT2
k matrices~see below!. The different weight val-

ues shown in Equations 2 and 3 were chosen to make the total score
similar in magnitude to those obtained when Equation 1 was used
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with the Blosum62 matrix. In the PASSC procedure, gaps were not
allowed in helices and beta strands.

The dynamic programming algorithm for finding the optimum
alignment had to be modified to use scores that depend on two
aligned residue pairs instead of just one pair. In the forward mov-
ing Smith–Waterman algorithm~Smith & Waterman, 1981!, best
alignments for the subsequences 1 toi 2 1 of one sequence and 1
to j 2 1 of the other are known, for all possible overhang lengths,
at the time the score is calculated for aligning the residuesi andj.
The modification consists of using this known upstream alignment
to find the residue and environment types of the aligned residue
pair, k-positions upstream, for each overhang. Gaps were consid-
ered like a residue in counting thek-value. This information and
the corresponding information for thei 2 j pair are used to cal-
culate the pair-to-pair alignment score for each overhang. The best
score, after subtracting the gap penalty appropriate for the over-
hang, is assigned to thei 2 j residue pair. This procedure finds the
best nongapped alignment, but it does not guarantee finding the
best global alignment when it contains gaps. A rigorous algorithm
for finding the true globally optimum alignment using these pair-
by-pair score matrices is not known at the present time.

Selection of the test set of proteins

To test the new score matrices, each of a set of probe sequences of
known structure were “threaded” through each structure in the
domain database. The test consisted of scoring how many of
the target proteins~domains that are structurally homologous to
the probe protein! could be identified for each probe sequence. The
probe sequences selected were the first members of each family in
the October 1996 release of the SCOP database~Murzin et al.,
1995!, which were between 60 and 350 residues in length and
which had at least one structural homologue of low sequence ho-
mology in the domain database.

We used two different criteria for deciding whether a probe and
a domain were to be considered structurally homologous. For the
purpose of selecting the probe sequences, a domain was considered
to be a structural homologue if the number of matched residues
after the structure–structure alignment by SHEBA was greater than
50% of the size of thelarger protein. This tended to select only
single domain proteins as the probe sequence. For the purpose of
determining true and false positives after threading, the criterion used
was that the number of matched residues by SHEBA alignment was

greater than 60% of thesmallerprotein. This second criterion was
used to recognize partial, as well as full, structural matches.

The sequence homology was considered to be low if the number
of identities was,30% of the structurally aligned residues. The
names of the 107 probe sequences selected by this procedure are
given in Table 10.

BLAST and PSI-BLAST runs

The BLAST runs were made for each test protein sequence against
the 3,539 structures in the domain database. The PSI-BLAST runs
were made for each test sequences against the Swiss-Prot protein
sequence database. A BLAST run was then made for each of the
hits obtained against all the PDB sequences to identify the hit
sequences for which the structure is known. The Blosum62 matrix
and default settings were used for both procedures. The number of
false positive BLAST hits, using the same SHEBA criteria for the
structural similarity, was 3% for the BLAST and 0.8% for the
PSI-BLAST runs. The low false positive rate for the PSI-BLAST
run is probably due to the fact that the second stage BLAST run in
this procedure was run against all PDB structures rather than against
the domain database. Running against all PDB increases the num-
ber of correct but essentially duplicate hits, which in turn reduces
the false positive rate. The numbers plotted in the inset of Figure 6
include only those for which there was at least one true positive, as
is the case for all other procedures.
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